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In a recent paper, Frey and Tauber [Phys. Rev. E 50, 1024 (1994)] conclude from a two-loop
renormalization-group analysis that, to order O(€?), there is no strong coupling fixed point for the
Kardar-Parisi-Zhang equation for substrate dimension d = 2. This contradicts previous studies. We
comment on some points in the paper and clear up some conceptual confusion regarding the field

theory renormalization-group technique.
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Recently two groups, Sun and Plischke [1], and Frey
and Tauber [2], performed two-loop renormalization-
group analyses for the Kardar-Parisi-Zhang (KPZ) equa-
tion which is generally believed to describe the dynam-
ics of driven interface where the lateral growth effect is
dominant. However, they arrived at different conclusions
for the practically important case of substrate dimension
d = 2. Sun and Plischke obtain a strong coupling fixed
point governing a rough growth regime with the rough-
ening exponent x ~ 0.16 and dynamic exponent z ~ 1.8,
while Frey and Tauber claim that, to order O(e?), there
is no finite strong coupling fixed point in this dimension.
Therefore, it is important to find out where the difference
arises from. The aim of this paper is to comment on some
points of Ref. [2] and clear up some basic concepts of the
field theory renormalization-group technique.

The Kardar-Parisi-Zhang equation in the frame mov-
ing with the average growth velocity of the interface can
be written as [3, 4]

Oh

ot
where h(x,t) is the interface height variable at space-
time point (x,t), A and v are constants, and the noise
n(x,t) satisfies the Gaussian distribution (n(x,t)) = 0,
and (n(x,t) n(x',t)) = 2D &(x—x') §(t —¢) . It
has been shown [3-5] that Eq. (1) is invariant under the
Galilean transformation and the fluctuation-dissipation
theorem exists in d = 1. Equation (1) can be trans-
formed to Fourier space as

(—iw + vk?)h(k,w)=n(k,w)

= vV2h + 1A (VR)? +1(x,t) , 1)

~% Aq [a- (k —q)]h(q,)
xh(k — q,w — Q) , (2)

where [, = [dQd%q/(2m)?*!. Starting from Eq. (2),
the renormalized response function, two-point correlation
function, and vertex function can be perturbatively cal-
culated, whereby the dynamic scaling properties of the
KPZ equation can be obtained.

The main reason leading Frey and Tauber to obtain the
free-field result is that the response function G1;(k,w) is
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not renormalized in their analysis. In the loop-expansion
formalism, the inverse of the response function, denoted
by I'11(k,w), may be generally expressed as

Tnkkw)=—iw [l +M; + Mz +---]
+vk®[1l + Ny + Ny +---], (3)

where M; and N;, ¢ = 1,2,..., are contributions from i-
loop calculation. Generally, the M’s and N’s have poles
in € = 2 — d due to the fact that the critical dimension
d. = 2 for the system. The task of the renormaliza-
tion group is to remove these singularities. For the KPZ
model in d = 2, we do have finite M; and N, indicating
that the one-loop calculation does not contribute to the
scaling properties of the model in this dimension. How-
ever, our calculation [1] shows that the two-loop terms
M, and N, do have poles in €. Thus the free-field re-
sults are corrected by the two-loop analysis and a strong
coupling fixed point is obtained. Nevertheless, Frey and
T&uber claim [2] that M, and N, are also finite, and
then they arrive at a free-field result. We find that they
obtain a finite M, because they choose a zero k& normal-
ization point and they obtain a finite N, because they
use a “partial € expansion” scheme, which we feel cannot
be accepted both physically and mathematically in the
renormalization-group formalism.

In their calculation, Frey and Tduber choose the point
(k = 0, w = —ivu?) as the normalization point (NP) [2],
where k and w are the external momentum and the exter-
nal frequency, respectively. One of the important proper-
ties of the KPZ equation is that the external momentum
k appears as a factor in all integrands of the loop ex-
pansion expressions. Thus at their NP, i.e., k = 0, all
contributions beyond the tree approximation are gone
and then [6]

Mk =0,0)=TP(k=0,0) = —iw, (4)

from which Frey and T&Auber conclude that M, is fi-
nite. Such a choice of NP violates the principles of the
renormalization-group theory. It is well known [8, 9] that
there are two ways to choose NP depending on whether
the system is massive or massless. For massive systems,
the NP can be chosen at k = 0 for simplicity. For mass-
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less systems, the NP must be chosen at finite k in order to
avoid infrared problems. The KPZ model is massless, so
that the NP must be chosen at finite external momentum
k? = k2, as has been done in Ref [1].

Frey and Tauber have argued [7] that for the mass-
less KPZ model the NP can be chosen at either finite
k or finite w; they choose the latter because it simpli-
fies the calculation and the finite w also helps to avoid
infared problems. We do not agree with this argument.
First of all, the external momentum k is a static variable
appearing in both statics and dynamics, while the ex-
ternal frequency w is a pure dynamic variable appearing
only in dynamics. In other words, the two variables k
and w are not in the same position in the scaling anal-
ysis and the basic scaling variable is k rather than w.
In the static renormalization-group theory one chooses
finite k as the NP for the massless system; in the dy-
namic renormalization-group analysis one should do the
same thing for consistency. Second of all, for Frey and
Tauber’s argument to be acceptable the two ways of
choosing the NP should be equivalent. That is, only
when two kinds of choices of NP give the same result
can one choose a simpler one. However, our calculation
shows that the two kinds of NP lead to different results.
Therefore, there is no choice between finite k and finite w
and one must choose finite k as the normalization point
of the massless KPZ model.

We now discuss the “partial € expansion” scheme which
results in the conclusion of finite N; in Ref [2]. In the
loop expansion of the vertex function I'1y(k,w), the d-
dimensional integrals can be typically expressed in the
following way:

Ii(k,w=0)=(2-4d) [cl 2-9

1
ey o e

PR v k2, (5)

where ¢; and c; are constants analytic in (2—d). The ap-
pearance of the factor (d—2) outside of the square brack-
ets is due to the form of vertex [q - (k — q)] in Eq. (2).
Frey and T&auber argue [2] that the (d — 2) factors in
the square bracket are ¢ = 2 — d, while the one out-
side the bracket is not because it arises from the vertex
[q - (k — q)]. Therefore they arrive at

1 1 .
I, (k,w =0) = (2 —4d) |:c1;+02€—2+---:|1/k .
(6)

They describe this treatment as “clearly distinguishing
between d and €.” Furthermore they conclude that in
the case of d = 2 all contributions from the loop expan-
sion disappear because of the factor (2 — d) in Eq. (6),
no matter what kind of singularity exists in the square
bracket. Consequently, they obtained finite N,. This is
their “partial € expansion” scheme.

We feel that this partial € expansion scheme is difficult
to accept. Mathematically, it violates the basic principle

of consistency. To calculate a d-dimensional integral, one
cannot regard the factor (2 — d) as an € somewhere and
regard it as not an ¢ somewhere else. Furthermore, the
factor (2—d) outside of the square bracket arises from the
vertex [q-(k — q)], which originates from the gradient op-
erator in the nonlinear term (Vh)? in the KPZ equation.
It is well known that this nonlinear term describes the
lateral growth effect, which is the essential physics of the
KPZ universality class of driven interface system. It must
be relevant to the large-scale, late-time scaling behavior
of the KPZ model. Therefore, physically one also cannot
simply regard it as an “artificial” dimensional factor and
ignore the important role it plays in the KPZ model. The
essence of the partial € expansion is to remove the non-
linear term from the KPZ equation in d = 2 because of
its gradient feature. That is, Frey and Tauber essentially
discuss the Edwards-Wilkinson equation [11] in the case
of d = 2, rather than the KPZ equation. Consequently,
they obtain a free-field result for this dimension.

There are other points in the paper that we would
like to discuss. First, the scaling analysis of the Callan-
Symanzik equation is problematical. Let us now exam-
ine Egs. (2.15)—(2.17) in Ref. [2]. To explain our point
clearly, we rewrite their Eq. (2.15) as follows:

[B] = A=4/273 45 *% D3/ . (7)

As Eq. (7) stands, to measure the canonical dimension of
h, Frey and T&uber used three units, A, vy, and Dy. It is
well known that [8-10] in the renormalization-group the-
ory there is only one basic unit for measuring the canon-
ical dimension of quantities, i.e., the momentum k, or
equivalently the cutoff A. Therefore, we feel that Eq. (7)
should be corrected to be

[h] :A—d/2—3—3d,,0/2+dD0/2 , (8)

where d,, and dp, are canonical dimensions of the pa-
rameters vy and Dy measured in the basic unit of A. The
other two equations should be corrected in the same way.
Of course, the quantities d,,, and dp, cannot be fixed by
the theory. But as has been pointed out in Ref. [1], the
final dynamic scaling properties of the KPZ model do not
depend on their exact values. However, they are relevant
for the derivation of the dynamic scaling form.

Consequently, we believe that Frey and Tauber ob-
tained incorrect expressions for the solutions of the
Callan-Symanzik equation, Egs. (3.54), (3.55), and
(3.56) in Ref. [2]. As has been clearly explained
by Amit [8] and Zinn-Justin [9], to solve the Callan-
Symanzik equation, one needs the canonical dimension
of the vertex function I';,, which should be measured in
only one basic unit of k. However, since Frey and Tauber
use three basic units to measure the canonical dimension
of I';, , some extra factors such as v(l) and D(l) appear
in Eqgs. (3.54) and (3.55) of Ref. [2]. Consequently, at a
fixed point, an extra scaling factor ¢~ 24 +<b is generated
in their Eq. (3.56). These extra factors would make the
final result inconsistent with Galilean invariance. Frey
and Tauber do not realize this point because they ob-
tained a free-field result.

Finally, we feel that the result for d > 2 in Ref. [2]
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is doubtful. According to the standard field theoretic
renormalization group [8, 9], the KPZ theory is super-
renormalizable for d < 2, renormalizable in d = d. = 2,
and finally nonrenormalizable for d > 2. In other words,
in principle the primitive divergences appearing in the
loop expansion cannot be removed by a finite number of
renormalization constants for d > d.. That is, generally,
the d. + € scheme in the field theoretic renormalization
group does not work for the case of d > d.. One fa-
mous example that a “nonrenormalizable theory” does
get renormalized is the nonlinear o model. Now it is
understood that this is due to the underlying O(N) sym-
metry of the model. In fact, the renormalizability of the
nonlinear ¢ model above its critical dimension is con-
firmed by symmetry analysis, which is independent of
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the perturbation expansion [8,9]. Regarding the KPZ
model, whether it is practically renormalizable for d > 2
is still an open issue. Based on the work of Doty and
Kosterlitz [12], it seems that the KPZ model is not renor-
malizable for d > 2. Therefore, the validity of the 2 + ¢
expansion in Ref. [2] is questionable.

We hope this article can help to clear up some
conceptual confusion regarding the useful field theory
renormalization-group technique.
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[1] T. Sun and M. Plischke, Phys. Rev. E 49, 5046 (1994).

[2] E. Frey and U. C. Tauber, Phys. Rev. E. 50, 1024 (1994).

[3] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

[4] E. Medina, T. Hwa, M. Kardar, and Y. C. Zhang, Phys.
Rev. A 39, 3053 (1989).

[5] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev.
A 186, 732 (1977).

[6] This is Eq. (2.27) in Ref. [2]. Frey and T&uber obtained
this equation in the context of discussing the Galilean
invariance and the Ward-Takahashi identity. They imply
that this equation is a direct result of the intrinsic sym-
metries of the KPZ equation. However, careful examina-
tion reveals that this is not the case. From the Galilean
invariance (Egs. (2.18)—(2.19) in Ref. [2]) and the Ward-
Takahashi indentity (Eq. (2.22) in Ref. [2]), one can ob-
tain Egs. (2.25) and (2.26), but not Eq. (2.27) of Ref. [2].

To obtain Eq. (2.27), one has to impose another condi-
tion, i.e., the external momentum k = 0. That is, this
equation is not a direct result of the Galilean invariance
and the Ward-Takahashi identity. Instead, it is a result of
zero external momentum, i.e., the choice of NP in Ref. [2].

[7] U. C. Tauber (private communication).

[8] D. J. Amit, Field Theory, The Renormalization Group
and Critical Phenomena (McGraw-Hill, New York,
1978).

[9] J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Clarendon Press, Oxford, 1993).

[10] K. S. Ma, Modern Theory of Critical Phenomena
(Addison-Wesley, Reading, MA, 1976).

[11] S.F. Edwards and D. R. Wilkinson, Proc. R. Soc. London
Ser. A 381, 17 (1982).

[12] C. A. Doty and J. M. Kosterlitz, Phys. Rev. Lett. 69,
1979 (1992).



